Search results for " sGLOH"
showing 4 items of 4 documents
Rethinking the sGLOH Descriptor
2018
sGLOH (shifting GLOH) is a histogram-based keypoint descriptor that can be associated to multiple quantized rotations of the keypoint patch without any recomputation. This property can be exploited to define the best distance between two descriptor vectors, thus avoiding computing the dominant orientation. In addition, sGLOH can reject incongruous correspondences by adding a global constraint on the rotations either as an a priori knowledge or based on the data. This paper thoroughly reconsiders sGLOH and improves it in terms of robustness, speed and descriptor dimension. The revised sGLOH embeds more quantized rotations, thus yielding more correct matches. A novel fast matching scheme is a…
RootsGLOH2: embedding RootSIFT 'square rooting' in sGLOH2
2020
This study introduces an extension of the shifting gradient local orientation histogram doubled (sGLOH2) local image descriptor inspired by RootSIFT ‘square rooting’ as a way to indirectly alter the matching distance used to compare the descriptor vectors. The extended descriptor, named RootsGLOH2, achieved the best results in terms of matching accuracy and robustness among the latest state-of-the-art non-deep descriptors in recent evaluation contests dealing with both planar and non-planar scenes. RootsGLOH2 also achieves a matching accuracy very close to that obtained by the best deep descriptors to date. Beside confirming that ‘square rooting’ has beneficial effects on sGLOH2 as it happe…
Improving SIFT-based descriptors stability to rotations
2010
Image descriptors are widely adopted structures to match image features. SIFT-based descriptors are collections of gradient orientation histograms computed on different feature regions, commonly divided by using a regular Cartesian grid or a log-polar grid. In order to achieve rotation invariance, feature patches have to be generally rotated in the direction of the dominant gradient orientation. In this paper we present a modification of the GLOH descriptor, a SIFT-based descriptor based on a log-polar grid, which avoids to rotate the feature patch before computing the descriptor since predefined discrete orientations can be easily derived by shifting the descriptor vector. The proposed des…
Is There Anything New to Say About SIFT Matching?
2020
SIFT is a classical hand-crafted, histogram-based descriptor that has deeply influenced research on image matching for more than a decade. In this paper, a critical review of the aspects that affect SIFT matching performance is carried out, and novel descriptor design strategies are introduced and individually evaluated. These encompass quantization, binarization and hierarchical cascade filtering as means to reduce data storage and increase matching efficiency, with no significant loss of accuracy. An original contextual matching strategy based on a symmetrical variant of the usual nearest-neighbor ratio is discussed as well, that can increase the discriminative power of any descriptor. Th…